已知数列{An}的通项为An=(n+2)[(9/10)n次方],问n取何值时,An的最大
发布网友
发布时间:2024-10-24 15:07
我来回答
共1个回答
热心网友
时间:2024-10-29 23:04
an=(n+2)*(9/10)^n
a(n+1)=(n+3)*(9/10)^(n+1)
a(n+1)/an=[(n+3)*(9/10)^(n+1)]/[(n+2)*(9/10)^n]
=9(n+3)/[10(n+2)]
当a(n+1)/an≥1时,说明an是递增数列
即9(n+3)/[10(n+2)]≥1
解得n≤7,即an在n≤7时是递增的,
即a1<a2<a3<……<a7=a8,
当a(n+1)/an<1时,说明an是递减数列
即9(n+3)/[10(n+2)]<1
解得n>7,即an在在n>7时是递减的,
即a8>a9>a10>……
所以an在n=7或8时an最大
a7=a8=9*(9/10)^7=9^8/10^7