已知反比例函数 的图象与一次函数 的图象交于点A(1,4)和点B...
发布网友
发布时间:2024-10-23 17:42
我来回答
共1个回答
热心网友
时间:2024-11-07 02:17
解:(1)∵点A(1,4)在 的图象上,∴ =1×4=4。
∴反比例函数的表达式为
∵点B在 的图象上,∴ 。∴点B(-2,-2)。
又∵点A、B在一次函数 的图象上,
∴ ,解得 。
∴一次函数的表达式为 。
(2)由图象可知,当 0< <1时, > 成立
(3)∵点C与点A关于 轴对称,∴C(1,-4)。
过点B作BD⊥AC,垂足为D,则D(1,-5)。
∴△ABC的高BD=1 =3,底为AC=4 =8。
∴S △ ABC = AC·BD= ×8×3=12。
(1)根据点A的坐标求出反比例函数的解析式为 ,再求出B的坐标是(-2,-2),利用待定系数法求一次函数的解析式。
(2)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出当 >0时,一次函数的值小于反比例函数的值x的取值范围或0<x<1。
(3)根据坐标与线段的转换可得出:AC、BD的长,然后根据三角形的面积公式即可求出答案。