搜索

怎么把无限循环小数转化为分数

发布网友 发布时间:2022-04-24 14:22

我来回答

5个回答

好二三四 时间:2022-09-03 12:02

无限小数化为分数有以下两种方法:

1、对于纯循环小数,循环节上有几个数字,分母就有几个9,分子是循环节的数字;

2、对于混循环小数,循环节上有几个数字,分母就有几个9,循环节前到小数点间有几位数字,分母9后面就有几个0,分子是混循环数字减去循环节前数字的差。

无限小数是指经计算化为小数后,小数部分无穷尽,不能整除的数。分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。

懂视网 时间:2022-12-31 06:24

无限循环小数化成分数的方法:

1、等比数列法:无限循环小数,先找其循环节,然后将其展开为一等比数列、求出前n项和、取极限、化简。

2、套公式法:纯循环,用9做分母,有多少个循环数就几个9,比如0.3,3的循环就是9分之3,0.654,654的循环就是999分之654, 0.9,9的循环就是9分之9。纯循环小数,将纯循环小数改写成分数,分子是一个循环节的数字组成的数,分母各位数字都是9,9的个数与循环节中的数字的个数相同。

热心网友 时间:2023-07-02 21:40

一、从小数点后就开始的循环小数化成分数:例如把0.4747……化成分数。

(1)0.4747……×100=47.4747……

(2)0.4747……×100-0.4747……=47.4747……-0.4747……

(3)(100-1)×0.4747……=47

(4)99×0.4747…… =47

(5)0.4747……=47/99

二、间隔几位的循环小数化分数:例如把0.325656……化成分数。

(1)0.325656……×100=32.5656……①

(2)0.325656……×10000=3256.56……②

(3)用②-①即得:0.325656……×9900=3256.5656……-32.5656……

(4)0.325656……×9900=3256-32

(5)0.325656……=3224/9900

扩展资料:

简单小数化分数的方法:

1、首先看小数点后面有几位数,如果是2位就除以100,是1位除以10,三位数除以1000,以此类推。

2、然后分子和分母约分到不能再约分为止。

3、拿0.12做列子,变成12/100,上下可以用4约分,变成3/25.

小数的大小比较:先看整数部分,整数部分较大的,这个数就大;整数部分相同就看十分位,十分位较大的,这个数就大;十分位相同就看百分位,百分位较大的,这个数就大。以此类推。

参考资料:百度百科-乘法

热心网友 时间:2023-07-02 21:40

无限循环小数是有理数,是有理数就可以化成分数。   循环小数有混循环小数、纯循环小数两大类。   混循环小数可以*10^n(n为小数点后非循环位数),所以循环小数化为分数都可以最终通过纯循环小数来转化。   方法1.无限循环小数,先找其循环节(即循环的那几位数字),然后将其展开为一等比数列、求出前n项和、取极限、化简。   例如:0.333333……   循环节为3   则0.3=3*10^(-1)+3*10^(-2)+……+3^10(-n)+……   前n项和为:30.1(1-(0.1)^(n))/(1-0.1)   当n趋向无穷时(0.1)^(n)=0   因此0.3333……=0.3/0.9=1/3   注意:m^n的意义为m的n次方。   方法2:设零点三,三循环为x,可知10x-x=三点三,三循环-零点三,三循环   9x=3   x=1/3   第二种:如,将3.305030503050.................(3050为循环节)化为分数。   解:设:这个数的小数部分为a,这个小数表示成3+a   10000a-a=3050   9999a=3050   a=3050/9999   算到这里后,能约分就约分,这样就能表示循环部分了。再把整数部分乘分母加进去就是   (3×9999+3050)/9999   =33047/9999   还有混循环小数转分数   如0.1555.....   循环节有一位,分母写个9,非循环节有一位,在9后添个0   分子为非循环节+循环节(连接)-非循环节+15-1=14   14/90   约分后为7/45

热心网友 时间:2023-07-02 21:41

这样想:
(1)循环小数分为:纯循环小数和混循环小数。

(2)纯循环小数的化法是:
如,0.ab(ab循环)=(ab/99),最后化简。

举例如下:
0.3(3循环)=3/9=1/3;
0.7(7循环)=7/9;
0.81(81循环)=81/99=9/11;
1.206(206循环)=1又206/999。

(3)混循环小数的化法是:
如,0.abc(bc循环)=(abc-a)/990。最后化简。

举例如下:
0.51(1循环)=(51-5)/90=46/90=23/45;
0.2954(54循环)=(2954-29)/9900=13/44;
1.41(1循环)=1又(41-4)/9990=1又4185/9990=1又31/74。

热心网友 时间:2023-07-02 21:41

1、纯循环小数的化法,如,0.ab(ab循环)=(ab/99),最后化简.举例如下:
0.3(3循环)=3/9=1/3;
0.7(7循环)=7/9;
0.81(81循环)=81/99=9/11;
1.206(206循环)=1又206/999.
2、混循环小数的化法,如,0.abc(bc循环)=(abc-a)/990.最后化简.举例如下:
0.51(1循环)=(51-5)/90=46/90=23/45;
0.2954(54循环)=(2954-29)/9900=13/44;
1.41(1循环)=1又(41-4)/9990=1又4185/9990=1又31/74.

热心网友 时间:2023-07-02 21:42

一、从小数点后就开始的循环小数化成分数:例如把0.4747……化成分数。

(1)0.4747……×100=47.4747……

(2)0.4747……×100-0.4747……=47.4747……-0.4747……

(3)(100-1)×0.4747……=47

(4)99×0.4747…… =47

(5)0.4747……=47/99

二、间隔几位的循环小数化分数:例如把0.325656……化成分数。

(1)0.325656……×100=32.5656……①

(2)0.325656……×10000=3256.56……②

(3)用②-①即得:0.325656……×9900=3256.5656……-32.5656……

(4)0.325656……×9900=3256-32

(5)0.325656……=3224/9900
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com
Top