发布网友 发布时间:2022-04-24 14:22
共5个回答
好二三四 时间:2022-09-03 12:02
无限小数化为分数有以下两种方法:
1、对于纯循环小数,循环节上有几个数字,分母就有几个9,分子是循环节的数字;
2、对于混循环小数,循环节上有几个数字,分母就有几个9,循环节前到小数点间有几位数字,分母9后面就有几个0,分子是混循环数字减去循环节前数字的差。
无限小数是指经计算化为小数后,小数部分无穷尽,不能整除的数。分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。
懂视网 时间:2022-12-31 06:24
无限循环小数化成分数的方法:
1、等比数列法:无限循环小数,先找其循环节,然后将其展开为一等比数列、求出前n项和、取极限、化简。
2、套公式法:纯循环,用9做分母,有多少个循环数就几个9,比如0.3,3的循环就是9分之3,0.654,654的循环就是999分之654, 0.9,9的循环就是9分之9。纯循环小数,将纯循环小数改写成分数,分子是一个循环节的数字组成的数,分母各位数字都是9,9的个数与循环节中的数字的个数相同。
热心网友 时间:2023-07-02 21:40
一、从小数点后就开始的循环小数化成分数:例如把0.4747……化成分数。
(1)0.4747……×100=47.4747……
(2)0.4747……×100-0.4747……=47.4747……-0.4747……
(3)(100-1)×0.4747……=47
(4)99×0.4747…… =47
(5)0.4747……=47/99
二、间隔几位的循环小数化分数:例如把0.325656……化成分数。
(1)0.325656……×100=32.5656……①
(2)0.325656……×10000=3256.56……②
(3)用②-①即得:0.325656……×9900=3256.5656……-32.5656……
(4)0.325656……×9900=3256-32
(5)0.325656……=3224/9900
扩展资料:
简单小数化分数的方法:
1、首先看小数点后面有几位数,如果是2位就除以100,是1位除以10,三位数除以1000,以此类推。
2、然后分子和分母约分到不能再约分为止。
3、拿0.12做列子,变成12/100,上下可以用4约分,变成3/25.
小数的大小比较:先看整数部分,整数部分较大的,这个数就大;整数部分相同就看十分位,十分位较大的,这个数就大;十分位相同就看百分位,百分位较大的,这个数就大。以此类推。
参考资料:百度百科-乘法
热心网友 时间:2023-07-02 21:40
无限循环小数是有理数,是有理数就可以化成分数。 循环小数有混循环小数、纯循环小数两大类。 混循环小数可以*10^n(n为小数点后非循环位数),所以循环小数化为分数都可以最终通过纯循环小数来转化。 方法1.无限循环小数,先找其循环节(即循环的那几位数字),然后将其展开为一等比数列、求出前n项和、取极限、化简。 例如:0.333333…… 循环节为3 则0.3=3*10^(-1)+3*10^(-2)+……+3^10(-n)+…… 前n项和为:30.1(1-(0.1)^(n))/(1-0.1) 当n趋向无穷时(0.1)^(n)=0 因此0.3333……=0.3/0.9=1/3 注意:m^n的意义为m的n次方。 方法2:设零点三,三循环为x,可知10x-x=三点三,三循环-零点三,三循环 9x=3 x=1/3 第二种:如,将3.305030503050.................(3050为循环节)化为分数。 解:设:这个数的小数部分为a,这个小数表示成3+a 10000a-a=3050 9999a=3050 a=3050/9999 算到这里后,能约分就约分,这样就能表示循环部分了。再把整数部分乘分母加进去就是 (3×9999+3050)/9999 =33047/9999 还有混循环小数转分数 如0.1555..... 循环节有一位,分母写个9,非循环节有一位,在9后添个0 分子为非循环节+循环节(连接)-非循环节+15-1=14 14/90 约分后为7/45热心网友 时间:2023-07-02 21:41
这样想:热心网友 时间:2023-07-02 21:41
1、纯循环小数的化法,如,0.ab(ab循环)=(ab/99),最后化简.举例如下:热心网友 时间:2023-07-02 21:42
一、从小数点后就开始的循环小数化成分数:例如把0.4747……化成分数。