搜索

高数定积分?

发布网友 发布时间:2022-04-24 12:43

我来回答

2个回答

热心网友 时间:2023-10-13 05:21

定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。
这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
中文名定积分外文名definite integral学    科数学本    质积分释    义积分和的极限相关名词不定积分
目录
1 定义
2 性质
3 常用积分法
\ 换元积分法
\ 分部积分法
4 分点问题
5 黎曼积分
6 定理
7 应用
定义
编辑
定积分定义:设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子区间[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。可知各区间的长度依次是:△x1=x1-x0,在每个子区间(xi-1,xi]中任取一点ξi(1,2,...,n),作和式
。该和式叫做积分和,设λ=max{△x1, △x2, …, △xn}(即λ是最大的区间长度),如果当λ→0时,积分和的极限存在,则这个极限叫做函数f(x) 在区间[a,b]的定积分,记为
,并称函数f(x)在区间[a,b]上可积。 [1]  其中:a叫做积分下限,b叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。
之所以称其为定积分,是因为它积分后得出的值是确定的,是一个常数, 而不是一个函数。
根据上述定义,若函数f(x)在区间[a,b]上可积分,则有n等分的特殊分法:
特别注意,根据上述表达式有,当[a,b]区间恰好为[0,1]区间时,则[0,1]区间积分表达式为:
性质
编辑
1、当a=b时,
2、当a>b时,
3、常数可以提到积分号前。
4、代数和的积分等于积分的代数和。
5、定积分的可加性:如果积分区间[a,b]被c分为两个子区间[a,c]与[c,b]则有
又由于性质2,若f(x)在区间D上可积,区间D中任意c(可以不在区间[a,b]上)满足条件。
6、如果在区间[a,b]上,f(x)≥0,则
7、积分中值定理:设f(x)在[a,b]上连续,则至少存在一点ε在[a,b]内使
常用积分法
编辑
换元积分法
如果
(1)
;
(2)x=ψ(t)在[α,β]上单值、可导;
(3)当α≤t≤β时,a≤ψ(t)≤b,且ψ(α)=a,ψ(β)=b,

分部积分法
设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式: [2] 
分点问题
编辑
定积分是把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。习惯上,我们用等差级数分点,即相邻两端点的间距
是相等的。但是必须指出,即使
不相等,积分值仍然相同。
我们假设这些“矩形面积和”
,那么当n→+∞时,
的最大值趋于0,所以所有的
趋于0,所以S仍然趋于积分值。
利用这个规律,在我们了解牛顿-莱布尼兹公式之前,我们便可以对某些函数进行积分。
例如:证明对于函数


证明:选择等比级数来分点,令公比


那么“矩形面积和”为
提取
,则有
利用等比级数公式,得到
其中


, 令
,则
令n增加,则s,q都趋于1,因而N的极限为

黎曼积分
编辑
定积分
定积分的正式名称是黎曼积分。用黎曼自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b.
我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个导函数的原函数。它们看起来没有任何的联系,那么为什么定积分要写成积分的形式呢?
定理
编辑
一般定理
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
牛顿-莱布尼茨公式
定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:
如果f(x)是[a,b]上的连续函数,并且有F′(x)=f(x),那么
用文字表述为:一个定积

热心网友 时间:2023-10-13 05:21

这里主要考察奇偶性,不懂的可以追问,记得采纳!

声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com
Top